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Chapter 1

Set Theory

1.1 Basic definitions and notation

A set is a collection of objects. For example, a deck of cards, every student enrolled in
Math 103, the collection of all even integers, these are all examples of sets of things. Each
object in a set is an element of that set. The two of diamonds is an element of the set
consisting of a deck of cards, one particular student is an element of the set of all students
enrolled in Math 103, the number 4 is an element of the set of even integers.

We often use capital letters such as A to denote sets, and lower case letters such as a

to denote the elements.

Definition 1. Given a set A, if u is an element of A we write

u ∈ A.

If the element u is not in the set A we write

u /∈ A.

Some sets that you may have encountered in mathematics courses before are:

• The integers Z

• The even integers 2Z

• The set of rational numbers Q

• The set of real numbers R.

We can now practice using our element notation:

Example 1.1.1. We have 4 ∈ 2Z.
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Example 1.1.2. 16 ∈ Z,

Example 1.1.3. 3 /∈ 2Z.

Example 1.1.4.
√

3 /∈ Q

So far, we have been defining sets by describing them in words. We can also specify
some sets by listing their elements. For example, define the set T by writing

T = {a, b, c, d, e}.

When defining a set by listing, always use the brackets {, }. Another set that we can define
by listing is the set of natural numbers

N = {0, 1, 2, 3, 4, · · · },

where we have indicated a general pattern (hopefully easily regognized!) by writing · · · .
Many sets cannot be listed so easily (or at all for that matter), and in many of these cases
it is convenient to use a rule to specify a set. For example, suppose we want to define a
set S that consists of all real numbers between −1 and 1, inclusive. We use the notation

S = {x|x ∈ R and− 1 ≤ x ≤ 1}.

We read the above as “S equals the set of all x such that x is a real number and x is greater
than or equal to −1, and less than or equal to 1.” What happens if someone specifies a set
by a rule like “x is a negative integer greater than 1000”? What should we do? There are
no numbers that are negative and greater than 1000. We allow examples of rules of this
kind, and make the following definition:

Definition 2. The empty set is the set with no elements, and is denoted by the symbol
φ, or by { }.

Thus, the above set {x|x ∈ Z, x < 0 and x > 1000} = { } = φ.

Definition 3. Two sets are equal if they have exactly the same elements, denoted

A = B.

If A and B are not equal, we write A �= B.

Example 1.1.5. Let T = {a, b, c, d, e} and let R = {e, d, a, c, b}. We can check that T and
R have exactly the same elements, so T = R.

Example 1.1.6. Let S = {x|x ∈ Z and x ≤ 0}, and let A = {3n|n ∈ Z}. We can see that
S �= A because A consists of all integer multiples of 3, hence 3 ∈ A but 3 /∈ S. This shows
S �= A.
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As we have seen from our examples, sets may contain a finite number of elements, or
an infinite number of elements. Examples of finite sets include T from Example 1.1.5, and
also the set of students enrolled in Math 103. Examples of infinite sets are Z and R.

Definition 4. If a set S is finite, we let n(S) denote the number of elements in S.

Example 1.1.7. Let T be as in Example 1.1.5, then n(T ) = 5.

1.2 Subsets

One important relation between sets is the idea of a subset. Given sets A and B, we say
B is a subset of A if every element of B is also an element of A. We denote this as

B ⊆ A.

Example 1.2.1. {2, 4, 6} ⊆ 2Z.

Example 1.2.2. Let A = {a, b, c, d, e}, and B = {a, e} then B ⊆ A.

Example 1.2.3. Let’s list all subsets of A from Example 1.2.2 that have four elements:

{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}.

For any set A, since every element of A is in A we have A ⊆ A. This says that a set
is always a subset of itself. We also consider the empty set to be a subset of any set A,
φ ⊆ A.

Let S = {a, b, c, d}, let’s list all subsets of the set S = {a, b, c, d}. To organize our work,
we will list them by size.

Table 1.1: Subsets of S

number of elements subsets
0 φ

1 {a}, {b}, {c}, {d}
2 {a, b}, {a, c}, {a, d}, {b, c}, {b, d}{c, d}
3 {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}
4 {a, b, c, d}

We have listed all of the subets of S. Notice that there are 16 of them. In fact, one can
prove the following theorem by using methods of counting covered later in this course.

Theorem 1.2.4. Let S be a set having N elements. Then there are 2N subsets of S.
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1.3 Union, Intersection, and Complement

Let U be a set. Given two subsets A and B of U we define the union of A and B to be
the subset of U that contains all elements that are in A, or in B, or possibly in both. The
union of A and B is denoted

A ∪B.

In our “rule” notation A ∪B = {x ∈ U |x ∈ A or x ∈ B, or both}.

Example 1.3.1. Let U = {1, 2, 3, · · · 10}. Let S = {2, 4, 6, 8, 10}, T = {5, 6, 7, 8}. Then

S ∪ T = {2, 4, 5, 6, 7, 8, 10}.

We often use what is known as a Venn diagram to illustrate sets. In a Venn diagram
circles are used to represent subsets of a set U (denoted by a large rectangle). Here is a
Venn diagram illustrating A ∪B.

Figure 1.1: A ∪B

We have the following facts about the union:

1. A ∪ φ = A

2. A ∪A = A

3. A ∪B = B ∪A

4. (A ∪B) ∪ C = A ∪ (B ∪ C)

We define the intersection of subsets A and B of U to be the subset of U that contains
all of the elements that are in both A and B. The intersection of A and B is denoted

A ∩B.

We have A ∩B = {x ∈ U |x ∈ A and x ∈ B}.
Here is a Venn diagram illustrating the intersection:
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Figure 1.2: A ∩B

Example 1.3.2. If U , S and T are given as in Example 1.3.1 above, then S ∩ T = {6, 8}.

We have the following facts about the intersection:

1. A ∩ φ = φ

2. A ∩A = A

3. A ∩B = B ∩A

4. (A ∩B) ∩ C = A ∩ (B ∩ C)

Given the two operations ∪,∩ we can apply them in combination, as long as we re-
member to use parenthesis to indicate in what order the operations should be performed.

Example 1.3.3. Let U = {a, b, c, d, e, f, g}, let S = {a, e}, H = {a, b, c, d}, K = {a, c, e, f}.
Then

(S ∩H) ∪K = {a} ∪K = {a, c, e, f},

S ∩ (H ∪K) = S ∩ {a, b, c, d, e, f} = {a, e},

(S ∩H) ∩K = {a}.

Notice that (S∩H)∪K �= S∩ (H∪K). It is important to always use parenthesis in the
appropriate place when working with three or more sets, statements like “A∩B ∪C ∩D”
do not have one interpretation so do not actually specify a set. The exception is when
all operations are the same, as in properties (4) of intersection and union. For example
A ∪B ∪ C = (A ∪B) ∪ C = A ∪ (B ∪ C).
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Example 1.3.4. Venn diagrams illustrating the sets (A ∪B) ∩ C, and A ∪ (B ∩ C).

Figure 1.3: (A ∪B) ∩ C A ∪ (B ∩ C)

Given A a subset of U , the complement of A is the subset of U consisting of all
elements not in A. The complement of A is denoted A

�.

Figure 1.4: A
�

Example: Let U = {· · · − 4,−3,−2,−1, 0, 1, 2, 3, 4, · · · }, let N = {0, 1, 2, 3 · · · }. Then

N
� = {−1,−2,−3,−4, · · · }.

The complement satisfies the following rules:

1. (A�)� = A

2. U
� = φ and φ

� = U

3. A ∪A
� = U

4. A ∩A
� = φ
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Example 1.3.5. Let D be the set of a standard deck of cards. Let R be the subset of red
cards, let F be the subset of face cards. (The face cards include all suits of K, Q, J.) Find
the following sets: (R ∪ F )�, R

� ∩ F
�, R

� ∪ F
�.

The set

R ∪ F = {A♥, A♦, 2♥, 2♦, · · ·K♥, K♦, K♠, K♣, Q♠, Q♣, J♠, J♣}

i.e. consists of all cards that are either red, or black face cards. The complement of R ∪ F

consists of the cards not listed above and is

(R ∪ F )� = {A♣, A♠, 2♣, 2♠, · · · , 10♣, 10♠}.

The set R
� is the set of black cards, the set F

� is the set of non-face cards (of any suit), so
the intersection is the set of black non-face cards:

R
� ∩ F

� = {A♠, A♣, 2♠, 2♣, · · · , 10♠, 10♣}.

This is the same set as (R ∪ F )�. Now let’s find R
� ∪ F

� the union of the black cards and
the non-face cards.

R
� ∪ F

� = {A♥, A♦, 2♥, 2♦, · · · 10♥, 10♦, A♣, A♠, 2♣, 2♠, · · · J♣, J♠, Q♣, Q♠, K♣, K♠}.

We see that R
� ∪ F

� is not equal to (R ∪ F )�.

Theorem 1.3.6. De Morgan’s Laws: Given two sets A, B ⊂ U ,

(A ∪B)� = A
� ∩B

�

(A ∩B)� = A
� ∪B

�

Example 1.3.7. Fill in the Venn diagrams for (A ∪B)�, and for A
� ∩B

�.

Figure 1.5: (A ∪B)�
A

� ∩B
�
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If we are interested in elements of a set A that are not contained in a set B, we can
write this set as A ∩ B

�. This concept comes up so often we define the difference of two
sets A and B:

A−B = A ∩B
�
,

Figure 1.6: A−B

For example, if S is the set of all juices in the supermarket, and T is the set of all
foodstuffs in the supermarket with added sugar, then S − T is the set of all juices in the
market without added sugar.

1.4 Cardinality and Survey Problems

If a set S is finite, recall that n(S) denotes the number of elements in S.

Example 1.4.1. Let D denote a standard deck of cards. n(D) = 52.

Theorem 1.4.2. If A and B are both finite sets, then

n(A ∪B) = n(A) + n(B)− n(A ∩B)

To see how this theorem works, lets consider our set D. Let the set of all red cards be
denoted R, and let the set of face cards be denoted F . How many elements are in R ∪ F?
We can count them as listed in Example 1.3.5, or we can use the formula. The intersection
consists of the six red face cards: {K♥, K♦, Q♥, Q♦, J♥, J♦}. Using the formula gives

n(R ∪ F ) = n(R) + n(F )− n(R ∩ F ) = 26 + 12− 6 = 32.

What we should not do is simply add the number of red cards to the number of face cards,
if we do that we have counted the red face cards twice.

We can use our formula for the number of elements to analyze surveys.

Example 1.4.3. Suppose Walter’s online music store conducts a customer survey to de-
termine the preferences of its customers. Customers are asked what type of music they
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like. They may choose from the following categories: Pop (P), Jazz (J), Classical (C), and
none of the above (N). Of 100 customers some of the results are as follows:

44 like Classical
27 like all three
15 like only Pop
10 like Jazz and Classical, but not Pop
How many like Classical but not Jazz? We can fill in the Venn diagram below to keep

track of the numbers. There are n(C) = 44 total that like Classical, and n(C ∩ J) =
27 + 10 = 37 that like both Jazz and Classical, so 44− 37 = 7 like Classical but not Jazz.

Example 1.4.4. Let’s look at some more survey results from Example 1.4.3:
78 customers like Jazz or Pop (or possibly both).
19 customers marked “None of the above” when asked what they like.
12 like Jazz and Pop, but not classsical.
How many like only Jazz?
To answer this, let’s fill in more of the diagram:
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We have n(C) = 44, n( (P ∪ J ∪ C)� ) = 19. If we let j be the number of surveyed
customers who like only Jazz, then because there are 100 surveyed customers, we see
19 + 44 + 15 + 12 + j = 100. Solving for j gives j = 10.

How many like Pop and Classical, but not Jazz?
We know that n(P ∪ J) = 78. Using the diagram, the number who like Pop and

Classical, but not Jazz is

78− 10− 27− 12− 15− 10 = 4.
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1.5 Cartesian Products

You may recall the Cartesian plane R2 which is the set of all points in the plane. This set
consists of ordered pairs of numbers (x, y) where x and y are real numbers. The point
(1, 2) is not the same as (2, 1). We use round brackets (, ) to denote ordered pairs, reserving
the brackets {, } for sets.

We can make a more general definition involving ordered pairs: Given two sets A, B

we define the Cartesian product to be

A×B = {(a, b)|a ∈ A and b ∈ B}.

Example 1.5.1.

{2, 3, 4} × {7, 9, 10} = {(2, 7), (2, 9), (2, 10), (3, 7), (3, 9), (3, 10), (4, 7), (4, 9), (4, 10)}

Theorem 1.5.2. If A and B are two finite sets, then the number of elements in the
Cartesian product A×B is given by

n(A×B) = n(A)× n(B).

Example 1.5.3. If we roll two dice, and create a set of all possible results. How many
elements are there?

We can think of the possible results of rolling dice as a set of ordered pairs. Let D1
denote the set of possible results of rolling the first die D1 = {1, 2, · · · 6}, and let D2 denote
the set of possible results of rolling the second die, D2 = {1, 2, · · · 6}. There are 6× 6 = 36
possible results from rolling the pair:






(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)






Example 1.5.4. Write out the subset of D1×D2 that represents cases where the sum of
the numbers showing is either 7 or 11. How many elements are in this set?

The subset we are looking for is

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} ∪ {(5, 6), (6, 5)}

= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6), (6, 5)}.

and the number of elements is 6 + 2 = 8.
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1.6 Excercises

1. Let U = {1, 2, 3, 4, 5, · · · , 10} A = {2, 4, 6, 8, 10} B = {3, 6, 9} C = {1, 2, 3, 8, 9, 10}
perform the indicated operations

(a) A ∩B

(b) A ∪B

(c) A
� ∩ C

(d) (A ∩ C)�

(e) (A ∪B) ∩ C

(f) (A ∪B) ∩A

2. Determine if the following statements are true or false. Here A represents any set.

(a) φ ⊆ A

(b) A
� ⊆ A

(c) (A�)� = A

3. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A = {1, 3, 5, 7, 9} and B = {1, 4, 5, 9}.

(a) Find A ∪B

(b) Find A ∩B

(c) Use a Venn diagram to represent these sets.

4. Let U be the set of integers. Let A = {3, 6}, B = {3, 8, 10, 12} and C = {6, 8, 10}.
Perform the indicated operations.

(a) B ∩ C
�

(b) (A� ∪ C
�)�

(c) (A ∪ C) ∩B

(d) B − C

(e) C −B

(f) B ∪ C
�

(g) A× C

5. Use Venn diagrams to verify DeMorgan’s laws.

6. Represent the following sets with a Venn diagram

(a) (B ∪ C) ∩A
�



1.6. EXCERCISES 15

(b) (A ∩B) ∪ C

7. Denote the set A = {x|x ∈ Z and x < 3} by the listing method.

8. A proper subset of a set A is one that is not equal to the set A itself. If a set has 6
elements, how many proper subsets does it have?

9. Describe the shaded region using ∩,∪,
�
,−:

a) b)

c) d)

e) f)
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10. One hundred students were surveyed and asked if they are currently taking math
(M), English (E) and/or History (H) The survey findings are summarized here:

Table 1.2: Survey Results

n(M) = 45 n(M ∩ E) = 15
n(E) = 41 n(M ∩H) = 18
n(H) = 40 n(M ∩ E ∩H) = 7

n[(M ∩ E) ∪ (M ∩H) ∪ (E ∩H)] = 36

(a) Use a Venn diagram to represent this data.

(b) How many students are only taking math?

11. Ninety people at a Superbowl party were surveyed to see what they ate while watching
the game. The following data was collected:

48 had nachos.

39 had wings.

35 had a potato skins.

20 had both wings and potato skins.

19 had both potato skins and nachos.

22 had both wings and nachos.

10 had nachos, wings and potato skins.

(a) Use a Venn diagram to represent this data.

(b) How many had nothing?

12. In Example 1.5.3 how many pairs sum to an even number, or one greater than 9?

13. Let D be a standard deck of cards, let S♥ = {A♥, K♥, Q♥, J♥}. a) List all the
subsets of S♥ that contain both the A♥ and K♥. How many subsets of this type
are there? Discuss why this is the same number as all the subsets of {Q♥, J♥}.
b) How many subsets of D contain both the A♥ and K♥?

14. Answer the following True or False.

(a) {1, 2, 3} is a subset of {3, 2, 1, 4}.
(b) {3, 2, 1, 4} is a subset of {1, 2, 3}.
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(c) The empty set is a subset of every set.

(d) 1 is an element of {3, 2, 1, 4}.
(e) {1} is an element of {3, 2, 1, 4}.
(f) {1} is a proper subset of {3, 2, 1, 4}
(g) {3, 2, 1, 4} = {1, 2, 3, 4}
(h) (0, 1/2) is an element of Q× Z
(i) (0, 1/2) is an element of Z×Q
(j) (−7/8, 0) is an element of Q×Q
(k) (−7/8, 0) is an element of Z× Z



18 CHAPTER 1. SET THEORY

1.7 Solutions to exercises

1. a) {6}, b){2, 3, 4, 6, 8, 9, 10}, c) {1, 3, 9}, d){1, 3, 4, 5, 6, 7, 9}, e) {2, 3, 8, 9, 10}, f) A.
2. a) T b) F c) T.
3. a) {1, 3, 4, 5, 7, 9}, b) {1, 5, 9}
4. a) {3, 12}, b) {6}, c) {3, 8, 10}, d) {3, 12}, e) {6}, f) all integers except 6,

g) {(3, 6), (3, 8), (3, 10), (6, 6), (6, 8), (6, 10)}
6.

7. {· · · ,−4,−3,−2,−1, 0, 1, 2}
8. 63
9. a) (A−B) ∪ (B −A) b) (A ∪B)� ∪ (A ∩B) c) B −A d) A− (A ∩B ∩ C)

e) [(A ∩B) ∪ (A ∩ C) ∪ (B ∩A)]− [A ∩B ∩ C] f) [(A ∪B)− (A ∩B)]− (B ∩ C)
10. b) 19
11. b) 19
12. 18 + 6− 4 = 20
13. a) {A♥, K♥}, {A♥, K♥, Q♥}, {A♥, K♥, J♥}, {A♥, K♥, Q♥, J♥}. b) 250.
14. a) True, b) False, c) True, d) True, e) False, f) True, g) True, h) False, i) True, j) True,
k) False



Chapter 2

Logic

2.1 Statements and Connectives

Symbolic logic studies some parts and relationships of the natural language by representing
them with symbols. The main ingredients of symbolic logic are statements and connectives.

A statement is an assertion that can be either true or false.
Examples. The following sentences:

It is sunny today;
Ms. W. will have a broader audience next month;

I did not join the club;

are statements, while questions (e.g. How’s the weather?), interjections (e.g. Cool!) and
incomplete sentences (e.g. If I could ...) are not considered to be statements unless
rephrased appropriately.

Simple statements do not contain other statements as their parts. (All of the examples
above are simple statements.) We typically represent simple statements using lower-case
letters p, q, r, ...; for example

s= Your bicycle is slick;
c= I like its color.

Connectives join simple statements into more complex statements, called compound
statements. The most common connectives and their symbols are:

and/but = ∧; or = ∨; if . . . , then =→ .

Example. Y our bicycle is slick and I like its color = s ∧ c.

19
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The “operation”
not = ¬

turns a single statement into its negation and it is not a connective.

The symbols representing statements, connectives, and the negation operation form our
dictionary. Parentheses are used for punctuation.

Simple statements.
p p is true (Assertion)

¬p p is false (Negation)

Connectives and compound statements.

p ∧ q p and q (Conjunction)
p ∨ q either p or q, or both (Disjunction)
p → q if p then q (Conditional)

Notes.

1. The connective or, in logic, has an inclusive meaning. For example, Bob will play
tennis or go to the movies is interpreted as follows: Bob will either play tennis, or go
to the movies, or do both.

2. The connective but has an identical role as the connective and, thus the same symbol
∧ is used for both. For example, Your bicycle is slick, but I don’t like its color is
written symbolically as b ∧ ¬c.

Parentheses.
The use of parentheses is important and needs particular attention. Suppose we want

to convert the following compound statement into symbolic form:

If I do a web search for pages containing the terms “termites” or “cattle”, then I will
search for pages containing “global warming”.

First we identify the simple statements present in these expression and assign letters to
each of them (we can rephrase them slightly without modifying their meaning):

t=I search for pages containing “termites;”
c=I search for pages containing “cattle;”
g=I search for pages containing “global warming.”

Connectives and punctuation help with splitting compound statements into simple ones.
For example, the particle then splits the compound statement into two parts: the first part
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is the disjunction t ∨ c, and the second is the simple statement g. The symbolic form of
the compound statement is then

(t ∨ c) → g.

Note. If we had accidentally skipped the parenthesis, we would have created the compound
statement t ∨ c → g, which could be read as: I search for pages containing “termites” or if
I search for pages containing “cattle”, then I search for those containing “global warming”.
This has a rather different meaning from the original statement!

2.1.1 Exercises

1. Convert the following compound statements into symbolic statements, by assigning
symbols to each simple statements (for example, f=“my favorite dish has lots of
anchovies”) and using the appropriate connectives:

(a) Jim is a lawyer, yet he is not a crook.

(b) Although our professor is young, he is knowledgeable.

(c) My favorite dish has lots of anchovies or is not spicy and also it comes in a
large portion.

(d) My favorite dish has lots of anchovies and it comes in a large portion or it is
spicy and it also comes in a large portion.

(e) If you do not attend class, then either you read a book or you will not pass the
exam.

(f) I am doing a web search for pages containing the terms “global warming”, but
not for pages containing both “termites” and “cattle”.

(g) I am doing a web search for pages containing the terms “global warming”, but
not for pages containing the word “termites” and not for pages containing the
word “cattle”.

2. Convert the following symbolic statement into words if
s=The sunroof is extra,
r=The radial tires are included,
w=Power windows are optional.

(a) (s ∧ w) → r.

(b) r ∧ [s ∨ (¬w)].

(c) (¬r) → [(¬s) ∨ (¬w)].

(d) ¬(w ∧ s).
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2.2 Truth Values and Truth Tables

Every logical statement, simple or compound, is either true or false. We say that the
truth value of a statement is true (represented by the letter T) when the statement is true,
and false (represented by the letter F) when the statement is false. The truth value of a
compound statement can always be deduced from the truth values of the simple statements
that compose it.

Example. If p=I play the piano is false, and q=I study logic is true, then the conjunction
p ∧ q =I play the piano and study logic is a false statement.

A truth table summarizes all possible truth values of a statement. For example, p can
only either be true (T) or false (F), so its truth table (the simplest of all) is:

p

T
F

The next simplest truth table is the truth table for the negation, whose truth values
are always the opposite as those of the original statement:

p ¬p

T F
F T

The truth tables for the conjunction and the disjunction are shown next. An easy way
to remember them is to note that the statement p ∧ q (conjunction) is true only when p

and q are both true; while the statement p∨ q (disjunction) is false only when p and q are
both false.

(Conjunction)

p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

(Disjunction)

Example. Construct the truth table for the compound statement ¬(p ∨ q) ∧ p.
We will first break down this statement in components of increasing complexity: the

simple statements p and q, the disjunction p ∨ q, its negation ¬(p ∨ q), and finally the
statement ¬(p ∨ q) ∧ p. We will create one column for each of these components:

p q p ∨ q ¬(p ∨ q) ¬(p ∨ q) ∧ p

T T
T F
F T
F F
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and fill them out according to the

2.2.1 Basic Rules

1. The negation ¬ reverses truth values.
(So the values in the fourth column are the opposite as the values in the third column.)

2. The only case in which a conjunction ∧ of two statements is true is when both state-
ments are true.

3. The only case in which a disjunction ∨ of two statements is false is when both state-
ments are false.

At the end, we obtain the completed truth table:

p q p ∨ q ¬(p ∨ q) ¬(p ∨ q) ∧ p

T T T F F
T F T F F
F T T F F
F F F T F

2.2.2 Exercises

1. Fill in the missing values in the following truth table:

p q ¬p ¬q p ∧ ¬q (¬p) ∨ q [p ∧ ¬q] ∨ [(¬p) ∨ q]
T T F F F T T
T F F T T
F T T F F T T
F F T T T

2. Construct truth tables for the following compound statements

(a) p ∧ ¬q.

(b) ¬(¬p) ∧ p.

(c) ¬(p ∨ q).
(d) (¬p) ∧ ¬q.

(e) ¬(p ∨ ¬q) ∨ p.

3. If p is a true statement and q is a false statement, what are the truth values of the
following statements? (For such problems, you need only construct one row of the
truth table.)

(a) ¬(p ∧ q).
(b) ¬(p ∧ ¬q).
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2.2.3 Big Truth Tables

Compound statements may contain several simple statements; in order to figure out how
many columns you need in the truth table:

Break the compound statement into “building blocks” of increasing complexity,
starting with a column for each letter, and ending with the compound statement itself.

We illustrate the procedure for the following compound statement containing three simple
statements (the most difficult case we will encounter):

(p ∧ ¬r) ∨ (q ∨ r).

If we break the statement into increasingly complex pieces, we will need one column for
each of the following (in order):

• p, q, r (the simplest building blocks)

• ¬r

• p ∧ ¬r and q ∨ r

• (p ∧ ¬r) ∨ (q ∨ r) (the most complex block)

So that the truth table will contain the seven columns:

p q r ¬r p ∧ ¬r q ∨ r (p ∧ ¬r) ∨ (q ∨ r)

Next, we fill in the first three columns. Since each of the 3 statements p, q, r is either
true (T) or false (F), there are 23 = 8 possibilities. (In fact, r can be true or false for each
of the 4 possible pairs of truth values associated with p and q.) Here is the truth table
with the first three columns filled in

p q r ¬r p ∧ ¬r q ∨ r (p ∧ ¬r) ∨ (q ∨ r)
T T T
T F T
F T T
F F T
T T F
T F F
F T F
F F F

In order to fill in the remaining columns, we follow the Basic Rules 2.2.1. Here is a partially
completed truth table, complete the rest on your own.
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p q r ¬r p ∧ (¬r) q ∨ r (p ∧ ¬r) ∨ (q ∨ r)
T T T F F T T
T F T F T
F T T F F T
F F T T T
T T T T T
T F F T T F
F T F T F T T
F F F T F F

2.2.4 Exercises

1. Construct the truth tables for the following compound statements:

(a) p ∧ (q ∨ r).

(b) ¬(p ∨ (¬q)] ∧ r.

(c) (r ∧ p) ∨ ¬q.

(d) (p ∧ q) ∨ (p ∧ r).

2.3 Conditional statements and their truth tables

A compound statement of the form “If p then q”, written symbolically as

p → q,

is called a conditional statement; p is called the antecedent, and q is called the consequent
of the conditional statement.
Example. Consider the conditional statement: If M is a human being, then M is mortal.
In this statement, p=“M is a human being” is the antecedent, and q=“M is mortal” is the
consequent. The truth table for a conditional statement is shown below:

p q p → q

T T T
T F F
F T T
F F T

and it is best justified by looking at the special case in which the conditional statement is
in the form of a promise, such as

If you deliver this pizza by 7PM, then I will give you a $5 bonus.
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For this conditional statement, the antecendent is p=you deliver this pizza by 7PM and the
consequent is q=I will give you a $5 bonus. Clearly, if you deliver the pizza by the stated
time (p = T ) and I give you $5 (q = T ), then the conditional is a true promise (i.e. p → q

is true). It is also clear that, if you deliver the pizza by 7PM (p = T ), but I do not give
you $5 (q = F ), then the promise was broken (i.e. p → q is false). Now, suppose you do
not deliver the pizza by 7PM (p = F ), then, whatever my decision is (to give you or not
give you the $5), then my original promise is still standing, (i.e. p → q is true).

2.3.1 Exercises

1. Given the conditional statement If your course average is better than 98% then you
will earn an A in the class,

(a) Identify the antecedent and the consequent, and write the statement in symbolic
form.

(b) Examine each of the four possible scenarios described in the truth table (p and
q both true, p=T and q=F, etc.) and explain why the corresponding truth value
for this conditional statement makes sense.

2. Construct a truth table for each of the following compound statements.

(a) (p ∧ q) → q.

(b) (¬p) → (p → q).
(c) [p ∧ (¬q ∨ r)] → (q ∨ ¬p).

2.4 Tautologies and Contradictions

Anything that happens, happens. Anything that in happening causes something else to
happen, causes something else to happen. Anything that in happening happens again,

happens again. Though not necessarily in that order.
(From Mostly Harmless, by Douglas Adams.)

A tautology is a statement that is always true. The expression “A is A” (often attributed
to Aristotle), is one of the most common tautologies. Consider these examples:

• A quote from a student: The main idea behind data compression is to compress data.

• A quote from George W. Bush concerning Native American tribes: Tribal sovereignty
means that, it’s sovereign.

Both statements are certainly true, but ... rather pointless.

The way we check whether a statement is a tautology is by using truth tables. Let us
look at the following paragraph taken from Through the Looking Glass by Lewis Carrol:
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“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort
you. . . Everybody that hears me sing it –either it brings the tears into their eyes,

or else –”
“Or else what?” said Alice, for the Knight had made a sudden pause.

“Or else it doesn’t, you know.”

The statement in bold face can be written in symbolic form as p ∨ ¬p, where p =It
brings tears into their eyes. The truth table for this statement is

p ¬p p ∨ ¬p

T F T
F T T

which says that any statement of the form p∨¬p is a tautology. Now fill out the following

truth table for the statement p ∨ ¬(p ∧ q) and show that this statement is a tautology:

p q p ∧ q ¬(p ∧ q) p ∨ ¬(p ∧ q)
T T
T F
F T
F F

As opposed to tautologies, contradictions are statements that are always false. The
expression “A and ¬A” is a contradiction.

I don’t believe in reincarnation, but I did in my past life. (Anonymous)

Another example of a contradiction is ¬[p∨ (¬p)] (show why). For more practice, complete
the following truth table for the statement p ∧ ¬(p ∨ q) and show that this statement is a
contradiction.

p q p ∨ q ¬(p ∨ q) p ∧ ¬(p ∨ q)
T T
T F
F T T F F
F F

2.4.1 Exercises

1. Show that the statement (p∨ q)∨ [(¬p)∧¬q] is a tautology by constructing its truth
table.

2. Use a truth table to check whether the following are tautologies, contradictions, or
neither.
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(a) p ∧ (¬p).

(b) p ∧ p.

(c) p ∨ ¬(p ∨ q).

(d) q ∨ ¬[p ∧ ¬p].

(e) q ∧ ¬(p ∨ p).

(f) ¬[(p ∧ q) → q].

3. (a) If a proposition is neither a tautology nor a contradiction, what can be said
about its truth table?

(b) If A and B are two (possibly compound) statements such that A ∨ B is a con-
tradiction, what can you say about A and B?

(c) If A and B are two (possibly compound) statements such that A ∧ B is a tau-
tology, what can you say about A and B?

2.5 Logical Equivalence

Two statements are said to be logically equivalent when they have the same logical content.
The simplest example of two logically equivalent statements is that of any statement p

and its double negation ¬(¬p). In fact, if p is true (or false) then so is its double negation
and viceversa. It is easy to check whether two statements are logically equivalent by using
truth tables

Two statements are logically equivalent when their truth tables are identical.

Example. Any two statements of the form p → q and (¬p) ∨ q are logically equivalent.
To show this we construct the following truth table (note that we duplicated a column for
q since it makes it easier to fill out the last column):

p q p → q ¬p q (¬p) ∨ q

T T T F T T
T F F F F F
F T T T T T
F F T T F T

The third and last columns (set in boldface) are identical, showing that the two statements
have identical truth values regardless of their contents, and thus are logically equivalent.
Note that this implies that, for example, the statements “If the price is right, I will buy
this” and “The price is not right or I will buy this” have the same logical content.
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2.5.1 Exercises

1. Determine whether the following pairs of statements are logically equivalent:

(a) p ∨ (p ∧ q) and p.

(b) ¬(p ∨ q) and (¬p) ∨ ¬q.

(c) ¬(p → q) and (¬p) → ¬q.

2. Are the statements “ If I am not in Charleston, then I am in Italy”, and “I am in
Charleston or I am not in Italy” logically equivalent? (To answer this question, first
convert them into symbolic statements.)

3. Show that p ∧ (q ∨ r) is logically equivalent to (p ∧ q) ∨ (p ∧ r).
(Equivalent queries: if you search for web pages containing the term logic and the
terms reason or politics, you will get the same results by searching for web pages
containing both terms logic and reason or both terms logic and politics.

4. Use a truth table to verify the following logical equivalences:

(a) p ∨ q = q ∨ p. (Commutative Law for disjunction.)

(b) p ∧ q = q ∧ p. (Commutative Law for conjunction.)

(c) (p ∧ q) ∧ r = p ∧ (q ∧ r). (Associative Law for conjunction.)

(d) (p ∨ q) ∨ r = p ∨ (q ∨ r). (Associative Law for disjunction.)

(e) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r) and p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) (Distributive
Laws.)

5. Use logical equivalence to rewrite each of the following sentences. If possible, rewrite
them more simply.

(a) Either she is late and has forgot to call, or she is late and has had an accident.

(b) You must take either Math or Logic, and you must take either Math or French.

6. If two propositions are logically equivalent, what can be said about their truth tables?

2.5.2 De Morgan’s Laws

The following long truth table:

p q p ∧ q p ∨ q ¬(p ∧ q) ¬(p ∨ q) ¬p ¬q (¬p) ∨ ¬q (¬p) ∧ ¬q

T T T T F F F F F F

T F F T T F F T T F

F T F T T F T F T F

F F F F T T T T T T
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shows an important pair of logical equivalences known as De Morgan’s Laws:

(A) ¬(p ∧ q) is logically equivalent to (¬p) ∨ ¬q.

(B) ¬(p ∨ q) is logically equivalent to (¬p) ∧ ¬q.

Example. It is not true that: today is Wednesday and it is raining is equivalent to
asserting that Today is not Wednesday or it is not raining.

2.5.3 Exercises

1. Joe tells you that he is an actor and went to India last summer. You know that he
is lying to you, what compound statement about Joe is true?

2. Simplify the expression ¬[(¬p)∧q] using De Morgan’s Laws and the double negation.

3. Use logical equivalence to rewrite the statement: It is not true that both you are a
billionaire and I am crazy.”

4. Use logical equivalence to rewrite each of the following sentences. If possible, rewrite
more simply.

(a) It is not true that both I am wise and you are a fool.

(b) It is not true that either I am wise or you are a fool.

2.6 Conditionals in the English Language

Michael Jordan eats Wheaties. (From a 1989 series of commercials.)

Conditional statements appearing throughout the English language do not often come in
the form

If p then q.

Here you will find a list of examples of commonly used forms of conditional statements.

(A) If you build it, he will come. (The Voice in the movie Field of Dreams.)
Here then is simply missing, but this statement is clearly recognizable as a conditional.

(B) When you are distracted, it is difficult to study.
This statement can be rewritten as: If you are distracted, then it is difficult to study.

(C) It must be alive if it is breathing.
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This statement can be rewritten as: If it is breathing, then it must be alive.

(D) Michael Jordan eats Wheaties.
This is a more subtle case. Surely the goal of this commercial is not just to inform you

that: If you are Michael Jordan, then you eat Wheaties. (This is the literal meaning of the
statement.) What they would like you to (mis-)understand is: If you eat Wheaties, then
you will become like Michael Jordan. We will discuss this common fallacy later on.

(E) No Koalas live in Texas
This can be rewritten as: If it is a Koala, then it does not live in Texas.

(F) To earn this scholarship, it is necessary to have a 3.0 GPA.
This is a widely used alternative form of conditional. It often occurs in legal documents

and written rules. We can translate it as: If you earned this scholarship, then you had a
3.0 GPA. A word of caution: this does not mean that a 3.0 GPA is the only requirement for
earning the scholarship, in other words, it may not be sufficient. Check out the following
examples.

(G1) To earn this scholarship, it is sufficient to have a 3.0 GPA and a gross yearly
income of below $15,000. Or,

(G2) You have a 3.0 GPA and a gross yearly income of below $15,000 only if you
earn this scholarship.

Both these statements mean: If you have a 3.0 GPA and a gross yearly income of below
$15,000, then you will earn this scholarship.

Summarizing the last two examples, the conditional

p → q

can be equivalently translated as

(F) q is necessary for p or (G) p is sufficient for q (or p only if q) .

2.6.1 Exercises

Rewrite the following statements using the form if . . . then . . . .

1. Every picture tells a story.

2. No gunea pigs are scholars.

3. You can believe it if you see it on the internet.

4. It is necessary to be 18 in order to be able to vote.

5. Doing crossword puzzles is sufficient for driving me crazy.
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6. I can come with you only if I can find some time.

7. Jesse will be a liberal when pigs fly.

2.6.2 How to negate a conditional statement

My Lord, I reject your proposition that “If we lose the war, then our heads will fall”!

To find out how we can rephrase a statement like the one above, i.e. how to a negate
conditional statement, we first complete the following truth table:

p q ¬q p ∧ (¬q) p → q ¬(p → q)
T T F F T F
T F T T F T
F T F F T F
F F T F T F

The completed truth table shows that:

The negation ¬(p → q) is logically equivalent to the conjunction p ∧ ¬q.

We can now rephrase the negation of the statement “If we lose the war, then our heads
will fall”, as “We lost the war, but our heads did not fall.”

2.6.3 Exercises

Write the negation of the following statements:

1. If you decide to go to the party, then I will go with you.

2. If you say “I do”, then you will be happy for the rest of your live.

3. I’ll be surprised, if that is an authentic Persian rug.

4. If wanting peace is wrong, I do not want to be right.
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2.7 Related Conditionals

In this section we introduce three important forms of conditional statements related to
p → q.

2.7.1 Converse, Inverse, Contrapositive

We begin with the statement

If you stay, then I leave.

The antecedent of this statement is p=you stay, and the consequent is q= I leave. The
symbolic form of the conditional statement is then

p → q.

The Converse. The converse statement is obtained by interchanging antecedent and
consequent. In symbols, the converse is simply

q → p.

Its English form is

If I leave, then you stay.

The Inverse. The inverse statement is obtained by negating the antecedent and the
consequent. In symbols, the inverse is

(¬p) → ¬q.

Its English form is

If you do not stay, then I do not leave.

The Contrapositive. The contrapositive statement is one of the most important related
conditionals (it will return in the study of validity of logical arguments). It is obtained by
both negating the antecedent and the consequent and by interchanging them. In symbols,
the contrapositive is

(¬q) → ¬p.

Its English form is

If I do not leave, then you do not stay.
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2.7.2 Exercises

1. For each of the statements written below:

–If I live in Miami, then I live in Florida;

–If you do not agree, then the deal will fall apart;

–It will bloom, if we water it;

(a) Write it in symbolic form, identifying the antecendent p and the consequent q.

(b) Write its converse, first in symbols, then in English.

(c) Write its inverse, first in symbols, then in English.

(d) Write its contrapositive, first in symbols, then in English.

2. Given the conditional statement (¬p) → q, write the following related conditionals
in symbolic form (simplifying when possible):

(a) The converse.

(b) The contrapositive.

(c) The inverse.

3. For each of these conditional statements, write the converse, inverse, and contrapos-
itive in the “if . . . then” form. In some cases it may be useful to restate the original
conditional in the “if . . . then” form first.

(a) If you lead, then I will follow.

(b) If it ain’t broken, don’t fix it.

(c) I will go to the party, if I finish studying.

(d) Walking in front of a moving car is dangerous.

(e) Milk contains calcium.

(f) If you built it, he will come.

(g) p → ¬q.

(h) ¬q → ¬p.

(i) p → (q ∨ r). (Hint: use one of De Morgan’s Laws.)

(j) Doing crossword puzzles is sufficient for driving me crazy.
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2.7.3 Logical equivalence of related conditionals

From the truth table

p q p → q q → p ¬p ¬q (¬p) → ¬q (¬q) → ¬p

T T T T F F T T
T F F T F T T F
F T T F T F F T
F F T T T T T T

we deduce two important observations:

The conditional p → q and its converse q → p are not logically equivalent.

Example. The statements If you are Michael Jordans, then you eat Wheaties and If you
eat Wheaties, then you are (like) Michael Jordan do not have the same meaning!

The conditional p → q and its contrapositive (¬q) → ¬p are logically equivalent.

Example. If Mr. X is the murderer, then his right index finger is missing and If his right
index finger is not missing, then Mr. X is not the murderer have the same logical content.

Note. We also observe that the converse q → p and the inverse (¬p) → ¬q are logically
equivalent statements. This should be no surprise since they are the contrapositives of
each other. (See exercise 1.)

2.7.4 Exercises

1. Show that the contrapositive of the inverse of p → q is the converse of p → q.

2. Which of the following statements are logically equivalent to The effects of global
warming will be mitigated if governments act quickly? (Select one or more and justify
your answer using truth tables.)

(a) If the effects of global warming are mitigated, then governments have acted
quickly.

(b) Governments will not have acted quickly if the effects of global warming will not
be mitigated.

(c) Governments will not have acted quickly or the effect of global warming will be
mitigated.
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2.8 Negating Statements with Quantifiers

Sentences containing universal quantifiers such as all, each, every, no(one), or existen-
tial quantifiers such as some, there exists, at least one, require some thinking when we
write their negations.

Example. The statement

All men in this group are named Bob,

can be applied to various situations, and can be true in some and false in others. Take
a look at the following groups of men illustrating all possible scenarios (followed by their
descriptions in parentheses):

A: Bob Hope, Bob Cape, Bob Sullivan. (All men are named Bob.)

B: Mark Joos, Bob Hope, Richard Smith. (Some men are named Bob and some are
not.)

C: Mark Joos, Rich Smith, Sam Tines. (No men are named Bob.)

The statement All men in this group are named Bob is clearly true for group A, and it is
false for both group B and group C.

When negating a statement with a quantifier, the statement and its negation must apply to
all scenarios and have opposite truth values in each scenario. Therefore, correct negations
of the statement

p=All men in this group are named Bob

are the statements

¬p=Some men in this group are not named Bob,
¬p =Not all men in this group are named Bob.

Caution: The statement All men in this group are not named Bob is not the negation of
the original statement, because there is one scenario (B) in which they are both false. So
they cannot be the negation of each other.

Similarly, correct negations of of the statement

p = Some of us have headaches

are the statements

¬p =None of us has headaches,
¬p =All of us do not have headaches.
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The Venn diagrams shown below in Figures 2.1 and 2.2 are helpful for remembering
these rules of negation.

A’s

B’s
B’s

not p

A’s

Some A’s are not B’s
Not all A’s are B’s

              All A’s are B’s

p

Figure 2.1: Negating statements with universal quantifiers.

B’s B’s

A’s

     No A’s are B’s
All A’s are not B’s

A’s

not pp

              Some A’s are B’s

Figure 2.2: Negating statements with existential quantifiers.

Notes:

1. The negation of a statement containing a universal quantifier (e.g. p =All animals
can swim, q =No one can hear) is a statement containing an existential quantifier
(¬p =Some animals can not swim, ¬q=Someone can hear.) This reflects the fact
that the negation of a universal truth requires at least one exception.

2. Similarly, the negation of a statement containing an existential quantifier (e.g. p=There
is a man who is three-meter tall) is a statement containing a universal quantifier
(¬p =No man is three-meter tall).

3. Recalling the fact that the double negation of a statement is the statement itself,
we can now easily write the negation of statements such as p =No one can sing and
q =Some of us will not join by simply looking at the Venn diagrams in Fig. 2.1 and
2.2. The correct statements are ¬p =Some person can sing and ¬q =All of us will
join.
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2.8.1 Exercises

1. Write the negations of the following statements:

(a) Some books are more interesting than this book.

(b) No gunea pigs are scholars.

(c) Every dog has its day.

(d) There exists a two-meter long dog.

(e) All losers will get another chance.

(f) A few of us are tall.

(g) Not everybody is a born singer.

(h) Some of these flowers are not yellow.

(i) Roses are red and violets are blue. (Review DeMorgan’s Laws before attempting
this.)

2. Write the negation of the following statement (Review DeMorgan’s Laws before at-
tempting this.)

No man is an island, and every man is a piece of the continent.
(From Devotions by John Donne.)

2.9 Logical Arguments and Venn Diagrams

A logical arguments is a list of premises (such as assumptions, rules, facts and observa-
tions), followed by a single statement called the conclusion. Here are two examples of
logical arguments:

All giraffes have long necks
I have a pet giraffe

Therefore, one of my pets has a long neck

Most kids love chocolate
I am no longer a kid

Therefore, I hate chocolate

Notice that each of these two arguments has two premises (the first two statements) and
one conclusion, preceeded by the word therefore.
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2.9.1 Validity of a logical argument

A logical argument is valid if, whenever all premises are true,
then the conclusion is also true.

In other words, validity of an argument means that true premises guarantee a true conclu-
sion.

A logical argument containing quantifiers is called a categorical syllogism. Recall that
quantifiers are terms such as all, every, each, none (the universal quantifiers), and some,
most, at least one, there is (the existential quantifiers). The validity of a categorical
syllogism can be tested in a particularly simple way using Venn diagrams.

Let us examine the first of the two arguments given above. This argument has two
premises:

P1: All giraffes have long necks.

P2: I have a pet giraffe.

We first “draw” the first premise using two Venn diagrams: the first circle represents
the group of all giraffes, and the second circle represents the group of animals with long
necks. Premise 1 tells us that the set of all giraffes is contained within the set of animals
with long necks, as illustrated on the left of Figure 2.3.

      long necks

Giraffes

Animals with 
      long necks

Giraffes

Animals with 

my pet giraffe

Premise #1 Premises #1 and #2: True conclusion 

Figure 2.3: An example of valid argument

Next, we complete the drawing by “adding” the second premise. This can be done
simply by placing a dot (representing my pet giraffe) inside the Venn diagram describing
the group of all giraffes (inner circle), as shown on the right of Figure 2.3.

Finally, we check whether the drawing forces the conclusion to be true: obviously, since
your pet giraffe is inside the set of all giraffes, which is inside the set of animals with long
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necks, your pet giraffe has to have a long neck too! So the conclusion (C: one of my pets
has a long neck) follows from the premises. We conclude that the first argument is valid.

We now move on to examine the validity of the second argument. This argument has
two premises:

P1: Most kids love chocolate.

P2: I am no longer a kid.

First note that sometimes premises and conclusion need to be rephrased to better under-
stand how to proceed. For example, Premise 1 Most kids love chocolate can be rephrased
as Some kids love chocolate without substantially changing its meaning, Premise 2 can also
be rephrased as I am not a kid. If we represent Premise 1 using Venn diagrams, we obtain
the two circles at the top of Figure 2.4.

Chocolate lovers

Chocolate loversKids

Kids Kids

I
I

Premise #1

Case 2: False conclusionCase 1: True conclusion

Chocolate
lovers

Figure 2.4: Negating statements with existential quantifiers.

When drawing the second premise, we notice that there are two possible options. The
dot representing “I” must be placed outside of the circle representing Kids, however it may
be outside of (left bottom diagram) or inside (right bottom diagram) the circle representing
Chocolate lovers. In the first case (outside), the conclusion is true, while for the second
scenario the conclusion is clearly false. Since we found a case in which true premises do
not force a true conclusion, we conclude that this argument is invalid.
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Notes:

1. To show that an argument is invalid it is sufficient to draw one scenario representing
each of the premises, in which the conclusion is false. You will need to build up your
intuition by looking at several examples. A good one is:

Some marigolds are yellow.
All lemons are yellow.

Therefore, some lemons are marigolds.

One way of representing the premises which shows that, for the selected scenario, the
conclusion is false is illustrated in Figure 2.5.

Marigolds Yellow things

Lemons

Figure 2.5: Another example of invalid argument.

2. The fact that an argument has a true conclusion does not guarantee its validity. For
example,

Some mammals have horns.
Cows have horns.

Therefore, cows are mammals.

is an invalid argument even if its conclusion is clearly true. In fact, this argument
has the same form as the one we discussed in Note 1. Show its invalidity using a
Venn diagram representation similar to the one in Figure 2.5.

2.9.2 Exercises

1. Use Venn diagrams to determine whether the following logical arguments containing
quantifiers are valid or not valid. Make sure to first identify the premises and the
conclusion.

(a) Every men is mortal.
Socrates is a man.
Therefore, Socrates is mortal.
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(b) Some philosophers are absent-minded.
Amanda is absent-minded.
Therefore, Amanda is a philosopher.

(c) All tigers are meat eaters.
Simba is a meat eater.
Therefore, Simba is a tiger.

(d) All vitamins are healthy.
Caffeine is a vitamin.
Therefore, caffeine is healthy.

(e) All A’s are B’s.
Some B’s are C’s.
Therefore, some A’s are C’s.

(f) No iMacs have floppy drives.
My computer has no floppy drive.
Therefore, my computer is an Imacs.

(g) Some investors are wealthy.
All wealthy people are happy.
Therefore, some investors are happy.

(h) No fish is a mammal.
Cows are mammals.
Therefore, cows are not fish.

(i) All people who drive contribute to air pollution.
All people who contribute to air pollution make life a little worse.
Some people who live in a suburb make life a little worse.
Therefore, some people who live in a suburb drive.

2. Complete the argument by adding a conclusion that makes the argument valid.
(There may be several correct answers.)

(a) Some rules are unfair.
All unfair rules should be eliminated.
Therefore, . . .

(b) Some mathematicians are fine musicians.
All fine musicians are intelligent.
Therefore, . . .

(c) No team which plays in a domed stadium has ever won the Super Bowl.
Some teams that wear red uniforms have won the Super Bowl.
Therefore, . . .
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2.10 Analyzing Logical Arguments with Truth Tables.

Recall that a logical argument consists of a list of premises (there may be two, three, or
more premises in an argument), followed by a single conclusion, and that validity means
that whenever all the premises are true, then the conclusion is also true. An argument is,
on the other hand, invalid when all true premises do not force a true conclusion.

In this section, we will learn how to use truth tables to determine the validity of some
arguments.

Example 1.

If you win the game, then I will celebrate.
You won the game.

Therefore, I am celebrating.

We rewrite the two premises and the conclusion in symbolic form, introducing the symbols:

p=You win the game, and q=I celebrate.

Then, the symbolic form of this argument is:

p → q

p

∴ q

Note: The symbol ∴ represents the word therefore, which introduces the conclusion.

We then construct a truth table whose last three columns contain Premise 1, Premise
2, and the Conclusion in this exact order.

p q p → q p q

T T T T T
T F F T F
F T T F T
F F T F F

Note: We duplicated the column for statement q as the last column. It is important that
the last columns is always the one representing the conclusion.

Looking at the truth table above, we observe that the first row (shown in boldface) is
the only row in which both premises are true. We check the truth value of the conclusion
in this row and find that it is true as well. We conclude that, since true premises guarantee
a true conclusion, this argument is valid.
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Summary 1. Any argument of the form

p → q

p

∴ q

is a valid argument. It is known as the Law of Detachment or Modus Ponens (its Latin
name).

Example 2.

If you are a hero, then you wear a Rolex.
You wear a Rolex.

Therefore, you are a hero.

We introduce the symbols:

p=You are a hero, and q=You wear a Rolex.

Then, the symbolic form of this argument is:

p → q

q

∴ p

The last three columns of the following truth table represent Premise 1, Premise 2, and
the Conclusion in this order:

p q p → q q p

T T T T T
T F F F T
F T T T F
F F T F F

There are now two rows in which both premises are true: the first and third rows. We
check the truth value of the conclusion in each of these rows and find that the conclusion
is true in the first row, but the conclusion is false in the third row. Since true premises do
not guarantee a true conclusion, this argument is invalid.
Summary 2. Any argument of the form

p → q

q

∴ p
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is an invalid argument. It is known as The Fallacy of the Converse (because it incorrectly
suggests that a conditional statement and its converse are equivalent statements).

Example 3.

If the test is positive, then you will require treatment.
You did not require treatment.

Therefore, the test was negative.

We introduce the symbols:

p=The test is positive, and q=You will require treatment.

Then, the symbolic form of this argument is:

p → q

¬q

∴ ¬p

The last three columns of the following truth table represent Premise 1, Premise 2, and
the Conclusion in this order:

p q p → q ¬q ¬p

T T T F F
T F F T F
F T T F T
F F T T T

The last row is the only row in which both premises are true. In this row the conclusion is
also true, showing that this is a valid argument.
Summary 3. Any argument of the form

p → q

¬q

∴ ¬p

is a valid argument and is known as the Law of Contraposition or Modus Tollens.

Example 4.

If you pay your taxes late, then you will pay a late penalty.
You do not pay your taxes late.

Therefore, you will not pay a late penalty.

We introduce the symbols:



46 CHAPTER 2. LOGIC

p=You pay your taxes late, and q=You will pay a late penalty.

Then, the symbolic form of this argument is:

p → q

¬p

∴ ¬q

The last three columns of the following truth table represent Premise 1, Premise 2, and
the Conclusion in this order:

p q p → q ¬p ¬q

T T T F F
T F F F T
F T T T F
F F T T T

Both premises are true in the third and last row. In the last row the conclusion is also true.
However, the conclusion is false in the third row. Since true premises do not guarantee a
true conclusion, this argument is invalid.
Summary 4. Any argument of the form

p → q

¬p

∴ ¬q

is an invalid argument, and is called the Fallacy of the Inverse (because it incorrectly
suggests that a conditional statement and its inverse are equivalent statements).

Example 5.

I will learn logic or I will eat my hat.
I will not eat my hat.

Therefore, I will learn logic.

We introduce the symbols:

p=I will learn logic, and q=I will eat my hat.

Then, the symbolic form of this argument is:

p ∨ q

¬q

∴ p

The last three columns of the following truth table represent Premise 1, Premise 2, and
the Conclusion in this order:
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p q p ∨ q ¬q p

T T T F T
T F T T T
F T T F F
F F F T F

The second row is the only one in which both premises are true. Checking the conclusion
in this row, we find that it is also true. Just like in Example 1, we conclude that this
argument is valid.
Summary 5. Any argument of the form

p ∨ q

¬q

∴ p

is a valid argument and is known as Disjunctive Syllogism.

2.10.1 Exercises

1. Use a truth table to determine whether the following arguments are valid or not valid.

(a) If the test is negative, then you will not require treatment.
The test was positive.
Therefore, you will need to be treated.

(b) If you love me, then you will do everything I ask.
You do not do everything I ask.
Therefore, you do not love me.

(c) If June 1 is Monday, then June 2 is Friday.
If June 2 is Friday, then June 5 is Wednesday.
Therefore, if June 1 is Monday, then June 5 is Wednesday.
Note: There are three distinct statements in this argument. How many rows
will your truth table have? This form of logical argument is sometimes known
as the Chain Rule.

(d) If a car has airbags, then it is safe.
This car has airbags.
Therefore, it is safe.

(e) Jamie is fluent in Spanish.
If Jamie is fluent in Spanish, then she will work in Madrid.
She will not visit Mexico or she will not work in Madrid.
Therefore, she will visit Mexico.
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(f)

p

q → ¬p

∴ ¬q

2. Determine whether each of the following arguments is valid or invalid.

(a) If I were a chicken, then I would lay eggs. However, I am not a chicken, so I
don’t lay eggs.

(b) If interest rates go down, then I will buy a house. If I buy a house, I will need
a loan. Therefore, I will not need a loan if I do not buy a house.

(c) If I am honest, you are lying; either you are lying or you have your facts wrong.
You cannot have done your research, if you have your facts wrong. You did your
research. Therefore, I am honest.

(d) If you like apples, you will like this pie. If you like this pie, then you will like
the bakery. Therefore, if you do not like the bakery, you do not like apples.

3. Given the premises:

P1: If today is saturday, then we do not have class today.
P2: If we do not have class today, then I will go shopping or I will go to the picnic.

(a) Write a valid conclusion (in English) for the argument.
(b) Write the entire argument in symbolic form.

4. Decide whether each of the following is a valid argument. If it is valid, give a proof.
If it is invalid, give a counterexample. In any case, supply verbal statements that
make all the premises true; if the argument is invalid make sure that they also make
the conclusion false.

(a)

p → r

(¬q) → ¬r

∴ p → q

(b)

p → (q ∨ r)
¬q

∴¬p
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5. Is the following logical argument in symbolic form valid? Explain your reasoning or
use a truth table to analyze it.

r

r → q

(¬p) ∨ ¬q

∴ ¬p

6. Is the following argument valid or invalid?

My stereo system is faulty: there is no sound coming out of the left speaker. Switching
the speaker leads will not bring sound to the left speaker if and only if the left speaker
is faulty. If switching the speaker leads causes the right speaker to fail, then there
is a fault with either the amplifier or the CD player. Switching the leads from the
CD player has no effect if and only if there is no problem with the CD player. I
discovered the following: switching the leads to the speakers resulted in both channels
failing, and switching the leads from the CD player reversed the problem from the left
to the right speaker. Therefore replacing the CD player and the left speaker will solve
the problem.

2.11 Solutions to Selected Exercises

Exercises 2.1.1

1. (a) j=Jim is a lawyer, c=Jim is a crook.

j ∧ ¬c.

(c) a=my favorite dish has lots of anchovies,
s=my favorite dish is spicy,
l=my favorite dish comes in a large portion.

(a ∨ ¬s) ∧ l.

(e) a=you attend class, r=you read the book, p=you pass the exam.

(¬a) → (r ∨ ¬p).

(g) g=my websearch is for pages containing “global warming”,
t=my websearch is for pages containing “termites”,
c=my websearch is for pages containing “cattle”.

g ∧ (¬t) ∧ (¬c).
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(Note: for each problem there are several correct answers, for example, in part (a),
one could also let c=Jim is a not crook. In this case the symbolic representation is
j ∧ c.)

2. (a) If the sunroof is extra and the power windows are optional, then the radial tires
are included.

(c) If the radial tires are not included, then either the sunroof is not extra or the
power windows are not optional.

Exercises 2.2.2

1.
p q ¬p ¬q p ∧ ¬q (¬p) ∨ q [p ∧ ¬q] ∨ [(¬p) ∨ q]
T T F F F T T
T F F T T F T
F T T F F T T
F F T T F T T

2. (a)
p q ¬q p ∧ ¬q

T T F F
T F T T
F T F F
F F T F

(c)
p q p ∨ q ¬(p ∨ q)
T T T F
T F T F
F T T F
F F F T

(e)
p q ¬q p ∨ ¬q ¬(p ∨ ¬q) ¬(p ∨ ¬q) ∨ p

T T F T F T
T F T T F T
F T F F T T
F F T T F F

3. (a) T.

Exercises 2.2.4
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1. (a)

p q r q ∨ r p ∧ (q ∨ r)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

(c)

p q r r ∧ p ¬q (r ∧ p) ∨ ¬q

T T T T F T
T T F F F F
T F T T T T
T F F F T T
F T T F F F
F T F F F F
F F T F T T
F F F F T T

Exercises 2.3.1

1. (a) antecedent: p=Your course average is better than 98%,
consequent q=You will earn an A in the class.

2. (a)

p q p ∧ q (p ∧ q) → q

T T T T
T F F T
F T F T
F F F T
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(c)

p q r ¬q (¬q) ∨ r p ∧ (¬q ∨ r) ¬p q ∨ ¬p [p ∧ (¬q ∨ r)] → (q ∨ ¬p)
T T T F T T F T T
T T F F F F F T T
T F T T T T F F F
T F F T T T F F F
F T T F T F T T T
F T F F F F T T T
F F T T T F T T T
F F F T T F T T T

Exercises 2.4.1

1.
p q p ∨ q ¬p ¬q (¬p) ∨ (¬q) (p ∨ q) ∧ [(¬p) ∨ ¬q]
T T T F F F F
T F T F T T T
F T T T F T T
F F F T T T T

2. (a)
p ¬p p ∧ ¬p

T F F
Contradiction

(c)
p q ¬p p ∨ ¬p ¬(p ∧ ¬p) q ∨ ¬(p ∧ ¬p)
T T F F T T
T F F F T T
F T T F T T
F F T F T T

Tautology

Exercises 2.5.1

1. (a)
p q p ∧ q p ∨ (p ∧ q)
T T T T
T F F T
F T F F
F F F F

Logically equivalent
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(c)

p q p → q ¬(p → q) ¬p ¬q (¬p) → ¬q

T T T F F F T
T F F T F T T
F T T F T F F
F F T F T T T

Not logically equivalent

3.

p q r q ∨ r p ∧ (q ∨ r) p ∧ q p ∧ r (p ∧ q) ∨ (p ∧ r)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Logically equivalent

4. (b)
p q p ∧ q q ∧ p

T T T T
T F F F
F T F F
F F F F

(d)
p q r p ∨ q (p ∨ q) ∨ r q ∨ r p ∨ (q ∨ r)
T T T T T T T
T T F T T T T
T F T T T T T
T F F T T F T
F T T T T T T
F T F T T T T
F F T F T T T
F F F F F F F

5. (a) She is late and has either forgot to call or has had an accident.

6. Their last columns are identical.

Exercises 2.5.3
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1. Either Joe is not an actor or he did not go to India last summer.

3. Either you are not a billionaire or I am not crazy.

4. (b) I am not wise and you are not a fool.

Exercises 2.6.1

1. If something is a picture, then it tells a story.

3. If you see it on the internet, then you can believe it.

5. If I do crossword puzzles, then I will go crazy.

7. If pigs fly, then Jesse will be a liberal.

Exercises 2.6.3

1. You decide to go to the party and I do not go with you.

2. That is an authentic Persian rug and I am not surprised.

Exercises 2.7.2

1. First statement:

(a) antecedent p=I live in Miami, consequent q=I live in Florida.

p → q.

(b) q → p

If I live in Florida, then I live in Miami.
(c) (¬p) → ¬q

If I do not live in Miami, then I do not live in Florida.
(d) (¬q) → ¬p

If I do not live in Florida, then I do not live in Miami.

2. (a) q → ¬p.

(c) p → ¬q.

3. (a) Converse: If I follow, then you lead.
Contrapositive: If I do not follow, then you do not lead.
Inverse: If you do not lead, then I will not follow.

(c) Original: If I finish studying, then I will go to the party.
Converse: If I go to the party, then I finished studying.
Contrapositive: If I do not go to the party, then I did not finish studying.
Inverse: If I do not finish studying, then I will not go to the party.
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(e) Original: If it is milk, then it contains calcium.
Converse: If it contains calcium, then it is milk.
Contrapositive: If it does not contain calcium, then it is not milk.
Inverse: If it is not milk, then it does not contain calcium.

(g) Converse: (¬q) → p.

Contrapositive: q → ¬p.

Inverse: (¬p) → q.

(i) Converse: (q ∨ r) → p.

Contrapositive: [¬(q ∨ r)] → ¬p or equivalently, (¬q ∧ ¬r) → ¬p.

Inverse: (¬p) → ¬(q ∨ r) or equivalently, ¬p → (¬q ∧ ¬r).

Exercises 2.7.4

1. By definition, the inverse of is p → q is (¬p) → ¬q. The contrapositive of (¬p) → ¬q

is (¬¬q) → ¬¬p, which is the same as q → p, the converse of p → q.

2. (b) This is the contrapositive of the original statement, so it is logically equivalent.

Exercises 2.8.1

1. (a) No book is more interesting than this book.

(c) Some dogs do not have their day.

(e) Some losers wil not get another chance.

(g) Everybody is a born singer.

(h) Either some roses are not red or some violets are not blue.

Exercises 2.9.2

1. (a) Valid: see Figure 2.6, left.

Men

Mortals

Socrates

 

Tigers

Meat eaters

Simba

 

Figure 2.6: Left: valid argument. Right: invalid argument.
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C’s

B’s

A’s

 

Investors

Wealthy people

Happy people

 

Figure 2.7: Left: invalid argument. Right: valid argument.

(c) Invalid: see Figure 2.6, right.

(e) Invalid: see Figure 2.7, left.

(g) Valid: see Figure 2.7, right.

(h) Invalid: see Figure 2.8.

live in suburbs

people
who drive

people who
pollute

people who make
life worse

people who

 

Figure 2.8: Invalid argument.

2. (b) Therefore, some mathematicians are intelligent.

Exercises 2.10.1
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1. (a) We can represent the argument symbolically as:

p → q

¬p

∴ ¬q

p q p → q ¬p ¬q

T T T F F
T F F F T
F T T T F
F F T T T

Invalid

(c) We can represent the argument symbolically as:

p → q

q → r

∴ p → r

p q r p → q q → r p → r

T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

V alid

Note: This valid argument is known as the chain rule or law of transitivity.

(e) We can represent the argument symbolically as:

p

p → q

(¬r) ∨ (¬q)
∴ r
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p q r ¬r ¬q p p → q (¬r) ∨ ¬q r

T T T F F T T F T
T T F T F T T T F
T F T F T T F T T
T F F T T T F T F
F T T F F F T F T
F T F T F F T T F
F F T F T F T T T
F F F T T F T T F

Invalid

2. (a) Invalid (Fallacy of the Inverse).

(c) Invalid.

3. (a) Therefore, if today is Saturday, then I will go shopping or I will go to the picnic.

4. (a) Valid: (¬q) → ¬r is the contrapositive of r → q, hence is equivalent. So we can
rewrite the argument as:

p → r

r → q

∴ p → q

This is valid by the law of transitivity. (See problem 1c above.)


